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It is shown that, in a three-coupled-mode approximation, exact analytical solution of a system of equations,
that describes a steady-state parametric frequency conversion, can be obtained as a solution of three closed
nonlinear Schrödinger equations, coupled only through their boundary conditions. A reason for such a possi-
bility lies in the description of the competition of two simultaneous second-order nonlinear processes in terms
of an effective cascade cubic nonlinearity. Specific features and nontrivial asymptotes of complex
self-consistent periodic solutions of the nonlinear Schrödinger equation are discussed.
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I. INTRODUCTION

Despite numerous presentations devoted to self-consistent
multicomponent periodic solutions of nonlinear Schrödinger
equation �NSE� and some other nonlinear equations �1–7�,
solutions of such type—multicomponent cnoidal waves
�MCWs�—are usually considered as something exotic in la-
ser physics. While these equations take into account the low-
est �cubic� terms in nonlinear polarization expansion, it is
generally accepted that MCWs are important in a rather lim-
ited range of problems. These are one-dimensional �1D�
problems of stable propagation of pulse trains through opti-
cal fibers �3–6,8� and of parametric generation under syn-
chronous pumping �9�, as well as two- and three-dimensional
�2D and 3D� problems of nondiffractive propagation of laser
beams with special transverse structure through photorefrac-
tive crystals �7,10� and media with quadratic nonlinearity
�11�. At the same time, MCWs become popular in other
fields of physics. The concept of MCW is widely used in
nonlinear hydrodynamics �1,12� and plasma physics �2,13�,
in description of coupled wave packets—quasiparticles �ex-
citons, biexcitons, superconducting pairs, etc.� formed by
electronic wave functions in physics of 1D chains �conju-
gated polymers� �14� and 2D planes �ferromagnetics and
high-temperature superconductors� �15�.

Below, we show that the MCW concept plays a key role
in one of the classical problems of nonlinear optics—in para-
metric up- and down-frequency conversion, including second
harmonic generation �SHG� and parametric amplification
�PA� in media with quadratic nonlinearity. Using a nonstand-
ard �for this physical problem, see �16�� technique, we dem-
onstrate that all such solutions are defined as self-consistent
periodic solutions of three steady-state NSEs for complex
amplitudes of the interacting modes. We present our paper in
the following way. First �Sec. II�, we show that, in a three-
coupled-mode approximation, solution of a steady-state para-
metric frequency conversion problem can be reduced to ana-
lytical solution of three closed NSEs, coupled only through
their boundary conditions. Then �Sec. III�, we present several
examples of the analytical solutions and show that NSE must
have a complex type of self-consistent periodic solutions
with oscillating phases. Their specific features and nontrivial
asymptotes are discussed in Secs. IV and V. Finally �Sec.

VI�, we show that the above complex periodic solutions of
NSE can be useful in other fields of physics, particularly in
problems of stable propagation of trains of laser pulses in
optical fibers upon the phase modulation by information sig-
nal or chirp.

II. PARAMETRIC FREQUENCY CONVERSION AND
NONLINEAR SCHRÖDINGER EQUATION

Consider the collinear nonlinear interaction of three plane
monochromatic waves �modes� with the frequencies �1,2
=� and �3=2�, the amplitudes A1–3 and the wave vectors
k1–3. We assume that the modes propagate from the plane z
=0 along the z axis through a medium with quadratic non-
linearity. Neglecting anisotropy and absorption, we assume
that the medium occupies the half-space z�0 and the type II
parametric process �so-called OEE interaction �16�� is real-
ized. In this case, the problem under consideration is de-
scribed using a well-known system of equations �16�,

�A1/�z = − i�A2
�A3 exp�− i�z� , �1a�

�A2/�z = − i�A1
�A3 exp�− i�z� , �1b�

�A3/�z = − i2�A1A2 exp�+ i�z� . �1c�

Here, � is the constant of nonlinear coupling and �=k1+k2
−k3 is the wave mismatch. Systems �1a�–�1c� have two stan-
dard integrals of motion,

I1�z� + I2�z� + I3�z� = I10 + I20 + I30, I1�z� − I2�z� = I10 − I20,

�2�

where Ii�z�=Ai�z�Ai
��z� �below—the intensity� is proportional

to the energy flux density of the ith �i=1–3� wave and Ii0

= Ii �z=0�. The first integral describes conservation of the
total energy flux, while the second one represents the so-
called Manley-Rowe relations �16�.

Using expressions �2�, we can reduce systems �1a�–�1c� to
three closed nonlinear equations describing self-consistent
periodic solutions for Ai�z�. For this purpose we change
variables
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Aj�z� = Ãj�z�exp�− i� jz� , �3�

select such constants �1–3, that

�1 + �2 − �3 − � = 0, �4�

and rewrite �1a�–�1c� in the form

�Ã1/�z − i�1Ã1 = − i�Ã2
�Ã3, �5a�

�Ã2/�z − i�2Ã2 = − i�Ã1
�Ã3, �5b�

�Ã3/�z − i�3Ã3 = − i2�Ã1Ã2. �5c�

Simple transformations with regard to integrals �2� yield an

equation for the amplitude Ã1Ã2 of nonlinear polarization
wave at the frequency �3 in the form

��Ã1Ã2�/�z = i��1 + �2�Ã1Ã2 − i��I10 + I20 + I30 − Ã3Ã3
��Ã3.

�6�

By differentiating �5c� and substituting �6� into the result
obtained, we derive the equation

�2Ã3/�z2 − i��1 + �2 + �3���Ã3/�z� + 2�2�I10 + I20 + I30 − ��1

+ �2��3 − Ã3Ã3
��Ã3 = 0. �7�

It is seen that the second term in �7� can easily be eliminated.
Indeed, taking into account that a specific choice of �1–3
values is not yet unique �see �4��, we can simply set

�1 + �2 = �/2, �3 = − �/2. �8�

Then, we finally obtain a closed equation for Ã3 in a form of
steady-state NSE,

�2Ã3/�z2 + 2�2�I10 + I20 + I30 + �2/8�2 − Ã3Ã3
��Ã3 = 0.

�9�

Note that, since �9� is a second-order equation, we must be
interested in its solutions satisfying the boundary condition

��Ã3/�z�z=0 = − i�Ã30/2 − i2�Ã10Ã20, �10�

which follows from �5c�. Here Ãi0= Ãi�z=0�.
Repeating the above successive transformations, we eas-

ily obtain

��Ã1
�Ã3�/�z = − i��1 − �3�Ã1

�Ã3 + i��− 2I10 + 4I20 + I30

− 4Ã2Ã2
��Ã2. �11�

Then, by differentiating �5b�, taking �11� into account, and
choosing the values of �1–3 such that

�1 − �3 = �/2, �2 = �/2, �12�

we find a similar closed NSE for Ã2,

�2Ã2/�z2 − �2�− 2I10 + 4I20 + I30 − �2/4�2 − 4Ã2Ã2
��Ã2 = 0.

�13�

As in the previous case, we must be interested in solutions of
�13� satisfying the boundary condition

��Ã2/�z�z=0 = i�Ã20/2 − i�Ã10
� Ã30. �14�

With allowance for the symmetry of the problem, a closed

NSE for Ã1 can be obtained by interchanging the subscripts
1↔2. Therefore,

�2Ã1/�z2 − �2�4I10 − 2I20 + I30 − �2/4�2 − 4Ã1Ã1
��Ã1 = 0

�15�

for

�2 − �3 = �/2, �1 = �/2, �16�

and the boundary condition

�Ã1/�zz=0 = i�Ã10/2 − i�Ã20
� Ã30. �17�

The reduction of the system �1a�–�1c� to three closed NSEs

for Ã1–3 seems to be surprising. Indeed, the possibility to
represent equations in the NSE form is usually attributed to
the existence of a cubic nonlinearity �3–6�. However, there is
no paradox here, because transition to closed equations �9�,
�13�, and �15� is simply equivalent to the description of the
competition of two simultaneous second-order nonlinear pro-
cesses �merging �1+�2→�3 and decomposition �3→�1
+�2 of quanta� in terms of an effective cascade cubic non-
linearity �18�.

Note that Eqs. �9�, �13�, and �15� do not form a system of
equations due to different values of �1–3 �see �8�, �12�, and
�16�� and relate to each other through boundary conditions
�10�, �14�, and �17�. However, it is much more important that

Ãi can be complex here. Therefore, in contrast to many other

nonlinear problems, desired dependences of Ãi magnitude
and phase on z can be very complicated. Thus, well-known
NSE analytical solutions �16� proportional to Jacobian ellip-
tic functions sn��z�, cn��z�, and dn��z�, where the constant
� is determined in Sec. III, do not exhaust all possible solu-
tions of �1a�–�1c� but determine the branches of such solu-

tions for which the phase of Ãi is fixed �the phase of Ai is
proportional to z, see �8� and �12� or �16��.

Note also that solutions of �9�, on the one hand, and of
�13� and �15�, on the other hand, must be fundamentally
different. This can be explained in the framework of a very
simple analogy with the problem of self-action involving the
so-called Kerr nonlinearity. In this context, Eq. �9� corre-
sponds to the case of defocusing nonlinearity, whereas Eqs.
�13� and �15� correspond to the focusing one �10�. When we
are not interested in the phases of all of the interacting
waves, it suffices to solve only one of Eqs. �9� and �13� or
�15�. After that, the desired dependences Ii�z� for two other
waves can be found from relationship �2�.
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III. EXAMPLES OF ANALYTICAL SOLUTIONS

As an example of the above approach, let us analyze one
of the simplest solutions of problems �1a�–�1c� which de-
scribes SHG in the case when I30=0. With regard to the

results from �10�, we can search for Ã3 in the form

Ã3 = B3 sn��z� . �18�

Substituting �18� into �9�, we obtain

�2 = �2�2�I10 + I20� + �2/4�2 − B3B3
��, �19�

k2 = B3B3
�/�2�I10 + I20� + �2/4�2 − B3B3

�� .

Here, 1�k�0 is the modulus of Jacobian elliptic functions.
Two limiting cases k→0 and k→1 correspond to harmonic
�sn��z�→sin��z�, cn��z�→cos��z�, dn��z�→1� and aperi-
odic �sn��z�→ tanh��z�, cn��z�→1/cosh��z�, dn��z�
→1/cosh��z�� solutions �17�. Note that condition 1�k2

�0 is ever fulfilled owing to the obvious relation I10+ I20
�B3B3

�. Moreover, A3�z� oscillations cannot be harmonic
�k=0� because in the case when B3B3

�=0 with allowance for
expression �2� we obtain

I1�z� = I10, I2�z� = I20, A3�z� = A30 = 0. �20�

It follows from �10� that A10=0 or A20=0, so that, at least
one of the fields at the frequency � in the plane z=0 van-
ishes. At the same time, solution �18� can be aperiodic
�k=1�, but only in the case of the total energy transfer to the
mode A3 �I10= I20 , B3B3

�=2I10� and the synchronous SHG
process ��=0�.

The amplitude B3 can now be found from �10�, which
immediately yields

�B3B3
��2 − 2�I10 + I20 + �2/8�2�B3B3

� + 4I10I20 = 0 �21�

and leads to the final result

I1�z� = I10 −
1

2
�I10 + I20 +

�2

8�2 −��I10 − I20�2 + �I10 + I20�
�2

4�2 + � �2

8�2	2
sn2��z� , �22a�

I2�z� = I20 −
1

2
�I10 + I20 +

�2

8�2 −��I10 − I20�2 + �I10 + I20�
�2

4�2 + � �2

8�2	2
sn2��z� , �22b�

A3�z� =�I10 + I20 +
�2

8�2 −��I10 − I20�2 + �I10 + I20�
�2

4�2 + � �2

8�2	2

sn��z�exp�+ i
�

2
z	 . �22c�

It is quite reasonable that solutions �22a�–�22c� coincide with
a well-known analytical solution for the simplest SHG case
�16,19�. However, we emphasize here that analytical solu-
tions of problems �1a�–�1c� can now be obtained for any
boundary conditions. Let us illustrate this statement using the
second example that describes the SHG with complete deple-
tion of the field A2 due to the total energy transfer to the field
A3. With regard to this fact and results from �10�, we can
search for solution of �13� in the form

Ã2 = B2 cn��z� . �23�

By substituting �23� into �13� and taking into account the
boundary conditions, we obtain

I1�z� = I10 − I20 sn2��z� , �24a�

A2�z� = A20 cn��z�exp�− i�z/2� , �24b�

I3�z� = 2I20��2/8�2I10 + sn2��z�� , �24c�

�2 = 2�2I10�1 + ��2/8�2I10��1 − I20/I10�� ,

k2 = I20/�I10 + ��2/8�2��1 − I20/I10�� . �24d�

It follows from �24d� that solutions of this type only exists
for I10� I20 and the amplitude A30 can be arbitrarily small
only in the case of synchronous interaction ��→0�. When
I10= I20, solutions �24a�–�24d� becomes aperiodic �k=1� and

I1�z� = I2�z� = I10/cosh2��z� , �25a�

I3�z� = �2/4�2 + 2I10 tanh2��z� , �25b�

�2 = 2�2I10. �25c�

To the best of our knowledge, solution �24a�–�24d� of prob-
lems �1a�–�1c� have not been reported.

To conclude this section, we consider one more exact so-
lution of �1a�–�1c� that we have not found in the literature
and which corresponds to the case of SHG with an incom-
plete depletion of the field A2. With regard to this fact, we
can search for solution of �13� in the form

Ã2 = B2dn��z� . �26�
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By substituting �26� into �13�, we obtain that either k2=0 and

I1�z� = I10, �27a�

I2�z� = I10�1 + 8�2I10/�
2� , �27b�

I3�z� = 2I10�1 + �2/8�2I10� �27c�

�so-called parametric bleaching, when the rates of the pro-
cesses �1+�2→�3 and �3→�1+�2 are equal�, or

I1�z� = I10 cn2��z� + ��2/8�2I10��I20 − I10�sn2��z� ,

�28a�

A2�z� = A20 dn��z�exp�− i�z/2� , �28b�

I3�z� = ��2/4�2I10�I20 cn2��z� + 2I10�1 + �2/8�2I10�sn2��z� ,

�28c�

�2 = 2�2I20, k2 = I10/I20 − ��2/8�2I10��I20 − I10�I20.

�28d�

It can easily be demonstrated that solution �28a�–�28d� of
problem �1a�–�1c� exists only when

I10 � I20 � I10�1 + 8�2I10/�
2� . �29�

All of the above solutions can be obtained by any other
approach. However, in our opinion, the technique used here
is much more convenient, that it enables us to find some
solutions and analyze their specific features. Because the
considered problem is completely integrable, all of these so-
lutions must be stable and the same set of solutions A1–3 can
be obtained if we specify the boundary conditions A10–30 for
all three interacting modes and start our consideration from
any equation �Eq. �9� for A3, Eq. �13� for A2, or Eq. �15� for
A1�.

IV. COMPLEX SOLUTIONS OF NONLINEAR
SCHRÖDINGER EQUATION

Using representation Ãi→ Ãi�+ iÃi� with two real variables

Ãi� and Ãi�, we convert each of Eqs. �9�, �13�, and �15� into a
system of two coupled NSEs, describing MCW composed of

two noninterfering �quadrature� components Ãi��z� and Ãi��z�.
Since the equations in each of the three systems are identical,
such a change of variables makes it possible to build only
degenerate MCW of the so-called Manakov type, for which

Ãi��z� and Ãi��z� are proportional to the same elliptic function

and the phase �i=arctan�Ãi��z� / Ãi��z�� does not depend on z
�10�. This means that NSE must have one more �with regard
to the solutions from �10�� complex type of self-consistent

periodic solution Ãi�z�, which describes nondegenerate
MCWs in parametric frequency conversion.

A. Focusing nonlinearity

First, we consider the case of focusing nonlinearity �Eqs.
�13� and �15�� and represent NSE in a standard normalized
form

�2Ã/�z2 + 2�ÃÃ� − 	�Ã = 0, �30�

where 	 is constant. Assuming that Ã�z�=X�z�exp�i��z��,
where X�z� and ��z� are real analytic functions, we obtain
the system of equations

�2X/�z2 − X���/�z�2 + 2�X2 − 	�X = 0, �31a�

X�2�/�z2 + 2��X/�z����/�z� = 0. �31b�

After integration of �31b�, we find that

X2 � �/�z = ��X2 � �/�z��z=0 = const. �32�

It follows from �31b� and �32� that, if there is a point z0,
where �X�z=z0

=0 and ��X /�z�z=z0
�0, then for all other points

z, where X�z��0, the equality �� /�z=0 must be satisfied
and therefore �=const. After integration of �32�, we easily
obtain

�2X/�z2 − ��0��
2I0

2/X3 + 2�X2 − 	�X = 0, �33a�

��z� = �0 + �0�I0�
0

z

dz�/X2�z�� . �33b�

Here I�z�=X2�z�, �X�z=0=X0; �X2�z=0=X0
2= I0; ���z=0=�0, and

��� /�z�z=0=�0�.
We search for an analytical solution of �33a� in the form

X�z� = ± �I0 + �I sn2��z� , �34�

where �I specifies the difference between two I�z� extremes
located at the points z=0 and z=2K /�, and K�k� is the com-
plete elliptic integral of the first kind �17�. The sign ± in �34�
reflects an invariance of �4� with regard to the replacement
X�z�→−X�z� and determines two branches of possible solu-
tions, which we identify below as the plus and minus
branches.

Differentiating �34�, substituting the result in �33a�, rep-
resenting cn2��z� and dn2��z� in terms of sn2��z�, and as-
suming that coefficients of different �from 0 to 3� powers of
sn2��z�, we obtain an algebraic system of equations for �I,
�, and k, which determines the solution of �30�,

Ã�z� = ± �I0 + �I sn2��z�exp�i��0 + �0�I0�
0

z

dz�/�I0

+ �I sn2��z���� , �35a�

�I = 	 − 3I0/2 + ��	 − I0/2�2 + ��0��
2I0, �35b�

�2 = − 	 + 3I0/2 + ��	 − I0/2�2 + ��0��
2I0, k2 = − �I/�2,

�35c�

existing only when

I0 � 	 + ��0��
2/2. �36�

The limit I0=	+ ��0��
2 /2 corresponds to the parametric

bleaching �see above� when I�z�= I0 and
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Ã�z� = ± �I0 exp�i��0 + �0�z�� . �37�

Asymptotes of solutions �35a�–�35c� can be characterized as
nontrivial. When ��0��

2�0, the branches of �35a�–�35c� do
not cross, since X�z��0. However, in the case when ��0��

2

=0, the domain of region existence for this solution is di-
vided into two intervals

2	 � I0 � 	 , �38a�

I0 � 2	 . �38b�

If condition �38a� is satisfied, then

Ã�z� = ± �I0 dn��I0z�exp�i�0� , �39a�

k2 = 2�I0 − 	�/I0, �39b�

and the signs of X�z� on both branches are different but con-
stant. Otherwise, we have

Ã�z� = ± �I0 cn��2�I0 − 	�z�exp�i�0� , �40a�

k2 = I0/�2�I0 − 	�� . �40b�

The boundary I0=2	 of the intervals given by expressions
�38a� and �38b� corresponds to the localized �solitary� solu-
tion

Ã�z� = ± �2	 cos h−1��2	z�exp�i�0� . �41�

Such a drastic metamorphosis follows from crossing of the
plus and minus branches of �35a�–�35c�. In the case when
I0�2	, a series of the points

zn = �2n + 1�K��I0/�2�I0 − 	��/�2�I0 − 	�, �42�

n = 0, ± 1, ± 2, . . . ,

where X�zn�=0 for both branches, appears on the z axis. The
analyticity requirement for X�z� and ��z� successively joins
the parts of solutions from two different branches, which
forms two solutions �43� with alternating sign and constant
phase.

B. Defocusing nonlinearity

In the case of defocusing nonlinearity �see �9��, Eqs.
�31a�, �31b�, and �33a� turn into

�2Ã/�z2c − 2�ÃÃ� − 	�Ã = 0, �43�

�2X/�z2 − ��0��
2I0

2/X3 − 2�X2 − 	�X = 0. �44�

Solution to �44� can again be searched in form �34�. Using
similar procedures, one can easily obtain an algebraic system
of desired equations for �I, �, and k. In contrast to the case
of focusing nonlinearity, there are three types of possible
solutions of �44�. The first one

Ã�z� = ± ��I sn��2	 − �Iz�exp�i�0� , �45a�

k2 = �I/�2	 − �I� , �45b�

with alternating sign of X�z� corresponds to the case when

I0 = 0, 	 � �I � 0, ��0��
2 = 0, �46�

and is related to a well-known class of so-called dark cnoidal
waves �10� with asymptote ��I→	� in the form of a stan-
dard dark soliton �3–6�

Ã�z� = ± �	 tanh��	z�exp�i�0� . �47�

As in the previous case, the sign of X�z� in �45a�, �45b�, and
�47� changes because the plus and minus branches intersect
in the points

zn = 2nK���I/�2	 − �I��/�2	 − �I, n = 0, ± 1, ± 2, . . . .

�48�

The second type of possible solutions of �44�,

Ã�z� = ± �I0 exp�i��0 + �0�z�� �49�

with a constant sign of X�z� is realized when

I0 = 	 − ��0��
2/2, ��0��

2 � 2	 , �50�

and corresponds to the parametric bleaching �see above�. Fi-
nally, the third type of solutions

Ã�z� = ± �I0 + �I sn2��z�exp�i��0 + �0�I0�
0

z

dz�/�I0

+ �I sn2��z���� , �51a�

�I = 	 − 3I0/2 − ��	 − I0/2�2 − ��0��
2I0, �51b�

�2 = 	 − 3I0/2 + ��	 − I0/2�2 − ��0��
2I0, k2 = �I/�2,

�51c�

looking like a kind of spatial shock wave or kink with a
constant sign of X�z�, is realized when

��0��
2 � 2	/3. �52�

Note two interesting facts. First, in contrast to the case of
focusing nonlinearity, solutions �45a�, �45b�, and �47� cannot
be obtained as asymptotes of �51a�–�51c�. While in the limit

I0 → 2�	 + ��0��
2 − ��0���2	 + ��0��

2� , �53�

solutions �51a�–�51c� become aperiodic �solitary�,

Ã�z� = ± �I0 + �I tanh2��z�exp�i��0 + �0�I0�
0

z

dz�/�I0

+ �Isn2��z���� , �54a�

�I = �2 = − 2	 − 3��0��
2 + 3��0���2	 + ��0��

2, �54b�

it significantly differs from dark soliton �47�. Because in this
case the condition ��0��

2�2	 /3 must also be satisfied, the
sign of X�z� in �54a� remains unchanged. Only in the region
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2	 � ��0��
2 � 2	/3, �55�

when I0→	− ��0��
2 /2, solutions �49� and �51a�–�51c� coin-

cide. Second, because zn=0 for n=0 �see �48��, solutions
�45a�, �45b�, and �47� are determined through the boundary
condition

��X/�z�z=0 = ± ��I�2	 − �I�, 	 � �I � 0, �56�

which can be recalculated to the boundary condition for X
and I of the point shifted by K���I / �2	−�I�� /�2	−�I
along the z axis.

V. FEATURES OF COMPLEX MCW SOLUTIONS

A specific character of the above class of NSE complex
periodic solutions becomes evident if we introduce real and

imaginary parts of Ã�z�,

Ã�z� = Ã��z� + iÃ��z� . �57�

Then, after substitution of �57� into �30� and �43�, we obtain
a classical system of two coupled NSEs with respect to the

real variables Ã��z� and Ã��z� in the form

�2Ã�/�z2 ± 2��Ã��2 + �Ã��2 − 	�Ã� = 0, �58a�

�2Ã�/�z2 ± 2��Ã��2 + �Ã��2 − 	�Ã� = 0. �58b�

If we try now to construct a two-component MCW using the

scheme from �10�, we find that Ã� and Ã� must be propor-
tional to the same elliptic function 
�z�,

Ã��z� = 
�z�cos �0, �59a�

Ã��z� = 
�z�sin �0, �59b�

because 	 in �58a� and �58b� is the same.

One can formally assume that both components Ã� and Ã�
can be obtained by projecting the one-component solution

�Ã�z��=
�z� along the axes of a system of coordinates, ro-
tated by a fixed �independent of z� angle �=�0

=arctan�A�̃ /A�̃� �10�. By the same substitution �57�, the com-
plex solutions described in the preceding section can be re-
written as

Ã��z� = �I0 + �I sn2��z�cos��0 + �0�I0�
0

z

dz�/�I0

+ �I sn2��z��� , �60a�

Ã��z� = �I0 + �I sn2��z�sin��0 + �0�I0�
0

z

dz�/�I0

+ �I sn2��z��� . �60b�

It is seen that, while solutions �60a� and �60b� look like
a Manakov-type solution with the magnitude �Ã�z��
=�I0+�I sn2��z�, its projection angle ��z�=�0
+�0�I0�0

zdz� / �I0+�I sn2��z�� exhibits rather complicated

nonlinear oscillations, matched with oscillations of �Ã�z��.
The character of such nonlinear oscillations can be found, for
example, in �19�.

VI. CONCLUSIONS

Thus, we have shown above that, in a three-coupled-mode
approximation, solution of a problem of a steady-state para-
metric frequency conversion, including SHG and PA in a
medium with quadratic nonlinearity, can be reduced to ana-
lytical solution of three closed nonlinear Schrödinger equa-
tions. Each of them is related to two others only due to its
boundary conditions and describes a complex type of non-
Manakov MCWs containing two noninterfering �quadrature�
components. The projection angle �the phase� of the corre-
sponding one-component solution exhibits complicated non-
linear oscillations, matched with nonlinear oscillations of its
magnitude. The above approach is based on the description
of a competition between simultaneous processes of the
merging �1+�2→�3 and decomposition �3→�1+�2 of
quanta in terms of an effective cascade cubic nonlinearity.
Moreover, it enables one to change the type of boundary
conditions. This makes it possible to use the same solution
for SHG and PA problems. For example, shifting the argu-
ment �→�+K of elliptic functions by one-quarter of their
period K is described by the standard substitutions sn���
→cn��� /dn���, cn���→−�1−k2 sn��� /dn���, and dn���
→�1−k2 /dn��� �17�.

Note also that such solutions can be extrapolated to the
half-space z�0 �by filling this half-space with the same non-
linear medium� and, then, set into motion at constant velocity
v along the z axis �by the replacement z→=z−vt, where 
is the running coordinate and t is the time�. This follows
from an invariance of the wave equation with respect to the
Lorentz transformation. Therefore, with regard to rather uni-
versal character of the nonlinear Schrödinger equation, one
can expect that the above complex periodic solutions �39a�,
�39b�, �51a�–�51c�, �54a�, and �54b� of NSE can be useful in
many other physical problems, where a derivative of the so-
lution phase can be not equal to zero at least in one fixed
plane =0=const. In our opinion, one of the most interest-
ing candidates is a problem of solitonlike propagation of
trains of laser pulses along optical fibers upon the phase
modulation by an information signal or by the chirp.
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